The Complexity of Homomorphisms of Signed Graphs and Signed Constraint Satisfaction

نویسندگان

  • Florent Foucaud
  • Reza Naserasr
چکیده

A signed graph (G,Σ) is an undirected graph G together with an assignment of signs (positive or negative) to all its edges, where Σ denotes the set of negative edges. Two signatures are said to be equivalent if one can be obtained from the other by a sequence of resignings (i.e. switching the sign of all edges incident to a given vertex). Extending the notion of usual graph homomorphisms, homomorphisms of signed graphs were introduced, and have lead to some extensions and strengthenings in the theory of graph colorings and homomorphisms. We study the complexity of deciding whether a given signed graph admits a homomorphism to a fixed target signed graph [H,Σ], i.e. the (H,Σ)-Coloring problem. We prove a dichotomy result for the class of all (Ck, Σ)-Coloring problems (where Ck is a cycle of length k ≥ 3): (Ck, Σ)-Coloring is NP-complete, unless both k and the size of Σ are even. We conjecture that this dichotomy can be extended to all signed graphs in a natural way. We also introduce the more general concept of signed constraint satisfaction problems and show that a dichotomy for such problems is equivalent to the statement of the Feder-Vardi Dichotomy Conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

More Equienergetic Signed Graphs

The energy of signed graph is the sum of the absolute values of the eigenvalues of its adjacency matrix. Two signed graphs are said to be equienergetic if they have same energy. In the literature the construction of equienergetic signed graphs are reported. In this paper we obtain the characteristic polynomial and energy of the join of two signed graphs and thereby we give another construction ...

متن کامل

Weak signed Roman k-domination in graphs

Let $kge 1$ be an integer, and let $G$ be a finite and simple graph with vertex set $V(G)$.A weak signed Roman $k$-dominating function (WSRkDF) on a graph $G$ is a function$f:V(G)rightarrow{-1,1,2}$ satisfying the conditions that $sum_{xin N[v]}f(x)ge k$ for eachvertex $vin V(G)$, where $N[v]$ is the closed neighborhood of $v$. The weight of a WSRkDF $f$ is$w(f)=sum_{vin V(G)}f(v)$. The weak si...

متن کامل

Weak signed Roman domination in graphs

A {em weak signed Roman dominating function} (WSRDF) of a graph $G$ with vertex set $V(G)$ is defined as afunction $f:V(G)rightarrow{-1,1,2}$ having the property that $sum_{xin N[v]}f(x)ge 1$ for each $vin V(G)$, where $N[v]$ is theclosed neighborhood of $v$. The weight of a WSRDF is the sum of its function values over all vertices.The weak signed Roman domination number of $G...

متن کامل

Signed total Italian k-domination in graphs

Let k ≥ 1 be an integer, and let G be a finite and simple graph with vertex set V (G). A signed total Italian k-dominating function (STIkDF) on a graph G is a functionf : V (G) → {−1, 1, 2} satisfying the conditions that $sum_{xin N(v)}f(x)ge k$ for each vertex v ∈ V (G), where N(v) is the neighborhood of $v$, and each vertex u with f(u)=-1 is adjacent to a vertex v with f(v)=2 or to two vertic...

متن کامل

Homomorphisms of Signed Graphs

A signed graph [G,Σ] is a graph G together with an assignment of signs + and − to all the edges of G where Σ is the set of negative edges. Furthermore [G,Σ1] and [G,Σ2] are considered to be equivalent if the symmetric difference of Σ1 and Σ2 is an edge cut of G. Naturally arising from matroid theory, several notions of graph theory, such as the theory of minors and the theory of nowhere-zero fl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014